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ON A NOVEL APPROACH TO THE PROBLEM OF THE CONCENTRATION
OF ELASTIC STRESSES NEAR A CRACK*

G.YA. POPOV

The three-dimensional problem of the theory of elasticity dealing with
the concentration of stresses near plane cracks is used to describe a
novel approach to solving the problem. The proposed approach is based,
unlike the traditional approach, on obtaining an expression for the
stress field as simple as that for the displacements, but using new
harmonic functions connected, in a prescribed manner, with the normally
used harmonic functions of the displacement field. In the case of a
plane plane crack the new representation for the stress field leads to
three~dimensional integral equations of a single type and solvable
separately, replacing the system of three integrodifferential equations
of the traditional approach. Moreover, the simple integral eguations
obtained must be solved in a wider than usual class of functions, namely
on the class of functions containing non-integrable singularities. All
this leads to a significant simplification of the formula for the stress
intensity coefficient.

1. Modification of the Trefftz solution of the Lamé equations. If we assume that v =
2Gu where u{z, ¥, z) is the displacement vector with coordinates u; (z, ¥, 2 (j=1,2,3)
and ¢ is the shear modulus, then we can represent the solution of the homogeneous Lamé
equations in the form /1/

v=1y -+ zgrad, (1.1)
where P is a harmonic vector with coordinates ¥;{j = 1,2, 3) and P, 1is a harmonic func-
tion. Here the harmonic functions ; (j =0, 1, 2, 3) are connected by the equation

2Py’ = —divp, x = 3 — 4 (1.2)

where it is Poisson's ratio and a prime denotes a derivative with respect to .
In accordance with formula {1.1) and using the Hooke's law, we establish the following
formulas for the stresses:

Ox = (1 —2u) " + 9 + 2"y 2Ty == Py by b 20 (1.3)
2., =P e’ + %' + 2z,

A dot denotes differentiation with respect to y, and a comma denotes differentiation
with respect to 2.

Let us introduce a new harmonic vector %* with coordinates ;% (j=1,2,3), defined
by the formulas

‘131* = (1 - 2”) ‘Po’ + \Pl/v 2"[’2* = \P1' + ‘po. + %' (1.4)
295% =Py’ e’ Py

The harmonicity of the functions ;¥ {j =1, 2, 3) follows from the harmonicity of Py
G=01,2,3).
Using formulas (1.4) and taking Egs.(1.2) into account, we establish that
divg® = —bo’ (1.5)

1f the vector %* has been found, then relation {1.5) can be used as the equation for
determining ¥, Using the harmonic functions ¥; (=1, 2, 3), we can express the stresses
(1.3) by the formulas

O = P,* + ¢, Tay = ¥+ 2P Tae = Po* {1‘6)
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which are as simple as those for the displacements (1.1).

2. Reducing the problem of a crack in the plane x =0 to two-dimensional integral
equations. We shall assume that the crack occupies the region S, which may be multiply
connected, in the plane r = 0, and the elastic unbounded medium with the constants u and
G is arbitrarily loaded. We will assume that the stresses are caused by the loads in question
and when there is no crack, have been found and are given by the formulas

o, = ¢ {z, ¥, z) Txy = G2 &, ¥, 2) T = qslz, ¥, 2) (2.1)
We shall seek the stress distribution in an unbounded elastic medium containing the
crack S, in the form of the sum of two terms
Oy = ¢ + a.*, Txy = + Txv*v Txz = 3 -+ sz* (22)

Here an asterisk denotes the discontinuous displacements and stresses /2/ caused by the
presence of the crack S. These must remove the stresses from the edges of the crack z = -0
appearing there in accordance with formula (2.1), i.e. they must satisfy, at these edges,
the following boundary conditions:

z =40, o.* = —{q (Ov ¥, z) Txu* = —¢, (0, ¥, Z), sz* = —q3 ©, ¥ 7’)' (23)
¥y reES

We shall construct the discontinuous stress and displacement fields using formulas (1.6).
in order to ensure the discontinuity, we must construct a discontinucus harmonic function
P {z, ¥, 2 with the jumps

[ O, y, z)} = v (—0, ¥, 2) — ¥ (+0, y, 2) (2.4)
W © vy =9 (-0, g 2 =9 (+0, y, 2)

on S. We shall use the well-known scheme /2/, first introducing a double Fourier trans~-
formation in the variables ¥ and 2:

o

Y (2) = S S\I? (2, y, z) eBV+idedydz

—00

Then, the double Fourier transform of the discontinuous harmonic function sought will
be given by the formula

Y &) = [’ (0)] D (2) + Iy (0)] D’ (=) 2.5)
Dy () == (2 VBT 222 el VB

Here [yg, (0)], [Psa’ (0)] are the double Fourier transforms of the jumps (2.4). Inverting
the resulting transform (2.5}, we obtain the required discontinuocus harmonic function with
jumps (2.4),

49 (2,9,2) = - | { o () e--adpar = 26)
(S [w'(O,n,C)]dnd§w+_2_SS [ (0. 1, 8)] dndt
&, W,z 0 dz R (y,2,m0)

Rz =VI2+ly—n+E—0"

Let us take, as the functions ¥;*(, y, 2) appearing in (2.2}, the discontinuous
harmonic functions determined by the formula (2.6), and let us realize the conditions (2.3).
The latter conditions imply that the jumps in the values of the stresses during the passage
across the surface S are zero, therefore according to (1.6) we have

W* 0, y, 91 =0,j=1,23 2.7
Therefore by virtue of {(2.6) the harmonic functions P;* will be given by the formulas

*0;m,
= WO g j=1,2,3 2.8)
8

Y@y z) =4 R 5HmD
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and from this it follows that the boundary conditions lead, according to (1.6), to the
following integral equations for determining the unknown jumps f{y,’ (0, 1, {)l:

1 [} (0, n, )] dndg )
FSSW=-—%(0,L/,Z), =123, yz&8 2.9

Having found the jumps, we can determine the functions w;(z, ¥, 2) (=1, 2, 3) using
the formulas (2.8).

In order to determine the stresses at any point of the unbounded elastic medium, we
must also find, according to (1.6), the harmonic function 1, (z, ¥, z). We shall use the
following scheme to achieve this. We can obtain the double Fourier transform 1, (z, y, 2)
using formula (2.5), i.e.

Yopn. (2) = [oga (0)] Dga (2) + Lpogr (0)] Py () (2.10)

but in this case we must find the jumps [w@x(Oﬂ.[wmx(Oﬂ, after connecting them with the

jumps  [ig (0)), Dpjms. (O)1.
From (2.7) we have *
[ )] =0, j =1, 2,3 2.11)

Taking into account the harmonicity of the function v, we can write formula (1.5) in
the form , . . .,
Yo F p* P =y + %o
or, after applying a double Fourier transformation in Yy and 2,
Vi — B — Mpig. = —(A2 + B?) s (2.12)
Changing now to the jumps, we establish the relation
[bopa ()] = (A2 4 B {iB [z, ()] -+ i [gen (0] — i (O)])
Let us differentiate relation (2.12) in %, and take into account the fact that the
harmonicity implies W&x::(x2+-ﬁz)¢ﬁx- Then
o, (0] = (A2 + B {iB [l (0) + i [gipa (O] — [, ()1}
If we now take into account formula (2.11), we obtain the following expressions for the
Jjumps:

[ )] . iB (W ()] + i [¥hs, (O
a0 = — 2L g (0] = ELn OF 2 0y O (2.13)

Let us substitute these expressions into formula (2.10) for the transform Yo (2, ¥ 2).
After inverting the transform with the help of a formula similar to (2.6), we arrive at the
relation

— v (@,9,3) == § (06 O, DI L@y —my 2 — 1y dndg + 1o
8
8
aaz S S[‘P:' O Y1 Lz y —m, z—1L) dndl

8

1P exp[—ifY —8Z—|z| VTR
L@Y.Z)= 2n 5 S (B + An)J/f! dpah.

—ca

Thus if the integral Eqs.(2.9) have been solved, the stress field in the elastic medium
will be given by the formulas (1.6), (2.8) and (2.14).

3. On the insufficiency of the solution of integral equation obtained in the class of
integrable functions. Let us construct a solution of the integral Eq.({2.9) in the class of
integrable functions for the case when $§ is a circle of radius a. We shall show that it is
insufficient for the complete solution of the problem. Let us pass to the system of polar
coordinates

y=rsing, z=rcos¢p, n=psinyp, {=pcosyP (3.1)
[p;* (0, p sin ¥, p cos Y)] = %, (0, ), 45 (0, 7 sin @, 7 cos @) = ¢; (r, ¥)
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Then in place of (2.9) we shall have

@ T
) (P, V) pdod P
S ijW)PP‘b :gj(r’q’)’ O\grga, I(Pl\<\n (32)
£l

—1
4n OS_ Vi —2rpcos (p— P

The above integral equation has several forms of solution in the class of integrable
functions {(/3, 4/ etc.). The solutions, however, appear to be unsuitable for achieving our
purpose. We shall show for example, why the solution of Eq.{3.2) given in /2/ is not suitable.
The solution was obtained as follows. The formula 6.511(1) in /5/ was used to show that the
kernel of integral Eq.(3.2) can be expressed in terms of the Bessel function of zero order,
and the addition formula 8.531(1) in /5/ in which 2cosng 1is replaced by ¢te | %o jg
used as this function. Subsequent application of the finite Fourier transformation given by
the formulas

n
i ¢ :
= S X oye™9de = 44, (r), n="0,4+1,42,... (3.3
-7%

reduces the integral Eq.(3.2) to a sequence of one-dimensional integral equations for the
Fourier transforms (after the substitution r =ax, p = af):

SW (@8 X (@B 2 = — L g az), D<ot (3.4)
n=0, 41, +2,...

The kernels of these equations are discontinuous Weber=-Sonin integrals

Walet) =\ 7, @7, @a (3.5)
o

for which we have the spectral relation 4 (5.2) of /2/. Using this relation and realizing

the method of orthogonal polynomials, we obtain the solution of integral equations in the
form f2/

o @®) = 3t ey Sy, =123 (3.8)

k=0

Hgne = — s = 3.7

16mk1? (n - 2k - 1/5) §6’ (az) 2Py (1 — 248 dz
0
i=1,2,3n=01,..5k=01,

Here we have taken into account the fact that, irrespective of the loading of the elastic
medium, we can establish a relation connecting g;, and g; .. (in particular, for an even
function g;(r, w) we have, in the variables o, g, . = g;.n), therefore we shall have to solve
Egs.(3.4) only for n> 0,

Using the positive definiteness of the kernel we can show that solution (3.6), (3.7) of
the integral Eq.(3.4) will be unique in the class of integrable functions. However, this
solution {indicated by the superscript zero) does not lead to the solution of our problem.

In order to confirm this we shall calculate the normal stress intensity coefficient NSIC

0. {0, r, . To do this, we shall need the values of these stresses at the continuation of the
crack, i.e. when r > a. In accordance with formulas (1.6), (2.8) and (3.1) we have, for
—0, (0, r, g), an expression corresponding to the left-hand side of relation (3.2), for j =1,

Let us calculate the Fourier transform for the stress o, (0, r, ¢), having previously
carried out the same operation as when deriving Eq.(3.4). We obtain

1
Oun (02) = o § Xin (@O W, (2. B, 2> 1 3.8)

The required NSIC is given by the formula
Ny(9) = lim Vaz — 1) 0. 0, az, ¢) (3.9)
x—1+0
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According to the inversion formula the following relation holds for the finite Fourier
transformation:

Ox (O, ar, @)= Z Oxn (az) e, =z =1

therefore we have

Ni(p)= 2 ewN®, NP = lim oz —T)o,, (az) (3.10)

Nne—-o0 x—+1+0

In order to find the limit appearing here, we must use expression (3.9) for O,y (az)
into which the solution (3.6) for j =1 has been previously substituted. Using formula
(L.7) of /6/ we have (z > 1) as a result ,

4n0,, (ax) = — ax 1Sy, (), Sy, () = (3.11)

—a 2 T (n ko Yo) T (k4 Yo) F (0 4k b 3o, K 3o o 26 O 2
dna™ Kink SKIT (n + 2k 4 3/y) T (— k -+ 1fy) 2°F

Continuing analytically the Gauss function appearing in (3.11) to the circumference
z=1+40, we obtain, using formula 9.131(2) from /5/,

£ ;‘ D(r+k-+1a) D (k4 Ys)
8Va k:ﬁ’ Xikn T (— k + 1y) kI 22K+7+1

{[RY (r A+ RN F (Y b 153 g3 (22 — D 27) — Y 2P — T x
2[T(n -k + o) DA F (k4 1,0+ k + 4 n 4 2k + 35 (22 — 1) 2™

Oxn (@) =

The above representation shows that the function o,, (az) 1is bounded when z—>1 +0,
and therefore we have N{® =0. Consequently the NSIC (3.9) is equal to zero under any

loading of the elastic medium, which is absurd. We arrive at the same result when instead
of the solution of integral Egq.(3.2) given in /2/ we use any other solution in the class of
integrable functions.

4. The construction of solutions of integral Eq.(3.4) in the class of non-integrable
functions. 1In order to obtain a correct solution of the problem, we must expand the class

of functions from which the solutions of integral Eq.(3.2) or Eq.(3.4) must be taken. Let us
first consider such an integral:

1

L@ n =

0

EIW, (2, ) dE
Ty 0SE<en n=0d @1)

where A is a complex number. Substituting into (4.1) the representation (3.5) for the
Weber-Sonin integral and changing the order of integration, we obtain

o 1
1rn
L(z,h) = SJ,, (tz) dt STE_?){ 1. @8 ds = 4.2)
0 0
T2 ¢ I8 Ty )
(27‘ )S ,1—le dt, 0z oo

i.e. (4.1) is a Weber-Sonin integral with a discontinuity at the point z = 1. We find its
value for z<<1 and =z >1 using formulas 6.574(1) and 6.574(3) from /5/.

Let us continue the result obtained analytically to the value A = ¥/, This yields
the following values of the integrals, which should be regarded in the generalized sense /7/:

! 0, VCx <

S EW (2, B)
T (R — ), 2> 1

p (1 —zyh (4.3)

dg:{
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The upper relation of (4.3) enables us to construct the solution of integral Eq.{3.4) in
the class of non-integrable functions in the form

Kin (GE) == %jn® (B) — Cpn8" (1 — £

where C;, is an arbitrary constant. Substituting the solution obtained into (3.8) and
taking into account the upper relation of (4.3) and (3.11), we obtain

Oy, (a2) = - [Cln = 1 + SIn (x)) » & > 1 (4'4)

4z VaE—

We shall use the following arguments to fix the arbitrary constants C;,. Formula (4.4)
determines the Fourier transform of the normal stresses at the boundary of the half-space
which would form if the unbounded elastic medium were bisected by the plane =z =0. In the
case of n =0 {the axisymmetric case) 0y {r) will represent the normal stress along the
above cut, and it will have to equilibrate the given load applied tc the half-space shown,
i.e. the resultant of these stresses or the integral

o«

S Oy (r) rdr
1

must be finite, and for this we need
O = O (%%}, 2> 00, 8> O {4.5)
In order to realize this condition, we shall replace the Gauss function in the series

appearing in (4.4) by its power representation, and transform the resulting double series
to the form

1 [ (m )
S (z) = Z_‘ "(It;'—;—m X (4.6)
TR
i YgeE (M 41 1)
Wl (m— PN (—~k F )T (m+n FEF 70

=0

We shall also assume that

z O Cm 1
Vo—1 = Z :,,g PR (4.7)
=y

Taking into account relations {4.6) and (4.7), we will establish that condition (4.5)
will hold provided that we assume that

Cin = Yano (20 + )72 (4.8)
Let us calculate the NSIC (3.9). In order to use formula {3.10) we must find Aﬁn%

and we do this by substituting the expression (4.4) into the second relation of (3.10). After
carrying out the corresponding passage to the limit, we obtain

N = —(2n)™ Cy, (a/2)'e

or, taking into account formulas (4.8) and (3.7),

1 Ntk
<y Vf& c g {az) x
N = 1 S s (4.9)

Formulas (3.10) and (4.9) then give the NSIC required.

It is best to compare this result with the analogous result obtained by traditional
methods. For example, the NSIC N, (p) is given, according to /2/, (p.261) after correcting
the error, i.e. replacing ¢**® by "%, by the same formula (3.10), and unlike (4.9) it
has the much more cumbersome form
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Ta \T (= )" (2m 3 m]
o ) 2a
AP _]/ Z >d e e (4.10)
m=0
1
JE = ng (az) PP a1 — 227 2™ Y T = 28 dg (%.11)
0
Here it was assumed that ¢¥ (az) = —gn (a2).

We shall now show how to reduce this cumbersome formula to the form (4.9).
Let us expand the given function £n in a series in Jacobi polynomials:

S1n (02) = 3 81 P Tt —222) (4.12)
=0

Using the orthogonality of the Jacobi polynomials, we obtain

Ous _ HT(nt kYT (n+ 26+ Ys)

*
Eink = Quxbingr —3 = NCEN ESVACESIA) (4.13)
. 1 zm—lgln (ax) P,’:’ ~1, (1— 213)
Bing = S Vl——_z" dz

0
Now substituting (4.12) into (4.11), we obtain
JE . =k2‘, T (4.1%)
=0

mk

1
I = S Pl Ye() 223 PR~ (1 — 220 2 Y T B ds
0

Carrying out the substitution 1 —2z2=¢ in the last integral, using formula 7.391(9)
from /5/ and substituting the result into (4.14), we reduce series (4.14) to a finite sum.
As a result formula (4.10) will take the form N{™ = n1) 2ag},,, Taking into account the second

relation of (4.13), we achieve complete agreement of the results.

5. The stress intensity coefficient in the Kelvin problem when there is a disc-shaped
erack. We shall discuss the results obtained in greater detail, applying them to the case
of the loading of an unbounded medium with a concentrated force P (the Kelvin problem),
parallel to the  axis and applied to the point with coordinates z=§,y=0,z2=h. The circular
crack of radius a is situated, as before, in the plane z=0. The distribution of the
stresses o, at z=40 1is given in the Kelvin problem by the formula /8/

Pt
8 (1 — WE+ v2 + (2 — WY

3t2
[t~ 2+ ggiamar | =m0

a,0,y,2) = X

Changing the variables (3.1) and passing to dimensionless coordinates r=az E=ab, h=
ac, we obtain

P b
81p (8%) = — —Fm” [1,,' (b, ¢ 1)—m1n” (b, c; z)] (5.1)
T N ks
1,00 = 3 § . N cos npdg
n o 2n VoTfr A+ «f— 2czcosg VT4 &+ 2% — 2cz cos @

-n 0

(the prime denotes a derivative with respect to b). The last integral can be calculated as
follows. We make the substitution cosg =t and use the representation Tn () = cosn arccost for
the Chebyshev polynomial. As a result we obtain

1
_ 1 S T, (adt B 2z
)_Vb-+(c+x)l S VI8V T—ya+y N R

nln(b,c;x
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Expandlng the radical in the integrand in a Maclaurin series in y and evaluating the
remaining integrals with the help of formula 7.391(3) from /5/, we obtain

- T {n+ Ya)ez)" 1 1 . bex
Vﬂ]ﬂ(b, C;x).:WF(n%'_Z_’n+~§.’2n+i’bwﬁ+ CTzp (5.2)

When determining the NSIC we should remember that in the present case we have

By n
8, -n by virtue of {(5.1), and therefore N{" = N{™. Formula (3.10) will then become

o
Ny(p) = ND +2 3 ¥ cos ng (5.3
M=)

The coefficients MNM™ can be found, according to (4.9) and (5.1), from the formula

P2 b
(n) —_ __ ' o — "
M 2y’ [J" ©0—gg—py Ja" ¢ C)] EH
1
I (b 1} ln+l
F N nl
n {b, ¢} OS m dzx (5.5)

Next we expand the integral (5.6) in a power series in ¢, using the representation

bah

o kid ]
Cc4x \n ()")] (Z')m—j(“ 1)’
o2 4+ (e + x)a]k = 7;‘;:) Cin (' ) > v Gy = 5};‘# -————-w———-i! m =7 = (5,6‘

A, (YA F (—m Al —A—m — )=
(=27 (7emh) 2 T {1 — &) T (& + Yam) T (M + 3am) cos Ygmm sin (b + Ygm)

where we have used the well~<known formula (/9/, p.112) for Gauss's function with argument
equals to -1.

The last equation yields important relations
e = (A (RIYY, oy = 0, £ =0, 1, (5.7
Using in (5.6) the formula for Newton's binormal and taking into account relations (5.7),
we obtain
- oY My (—=nF ot
—— (-9}
[b2+(c+z)2ﬁ > &nt L W e (2, T ©8
1 c‘““ B (= nF .
@41 ZI W e 2Ry e
(=1 1
If we now substitute expression (5.2) into (5.5) having previously replaced Gauss's
function in it by its representation in the form of a power series and using Eq.(5.8), we
obtain the required power representation
Vi \o (e ‘/xwfm " e
I (b 0)=—¢ 2 (2,54.1 [L 3 B;‘,:“(b)—}— Z(Zk-r‘ v By (b)} (5.9)
=0 =20

Byt = ()2 pI U (1 (e j e YT (n b Vi - 1) T4 (0 Yol +
SaFa(n 4 b+ j+ My b+ Yy, nd Yo+ 15 Yy 1+ Yof + by —b72)

By == (—F2MHG RIS gy (0 f o YT (0 Yy + Y X
“Hn A Yyt ohaFa (- k4 F A Yoy kA Yo nt Y A Yoy Mgy n+ Yaf +
Wy —b?)

Thus the NSIC required is given by (5.3},
the NSIC for the case of axial symmetry.

{5.4) and {5.9), which can be used to find
formulas (5.4) and (5.9).

To do this it is sufficient to put c¢=0¢ in
As a result we find

NP = — 12 (1 ) P (20)™V 573 [(p — 2) F (1, Vs ¥ — 079 -+

(5.10)
M (T — 2p) b73F (2, 3/z; "o — %) — 1¥gsb 0 (3, 3/3; ¥y, — 57%)]
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It is best to use the above formula when &3> 1, otherwise we have to apply formula
9.131 and 9.132 from /5/. In order to demonstrate their use, we will obtain the NSIC for
the case when » =0, i.e. for the case when the force P is applied directly to the edge
z =40 of the crack. In this case Gauss's function in (5.10) should be transformed using
formula 9.132(2) from /5/, and this will enable us to carry out, after some reduction, the
passage to the limit as b—0. As a result we obtain

N, = a=2p (2a): (8 — 3u) (1 — p).
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FRACTURE OF A NARROW BRIDGE BETWEEN CRACKS LYING IN THE SAME PLANE*

S.A. NAZAROV and O.R. POLYAKOVA

The stress-deformation state of an isotropic elastic space weakened by a
family of cracks of normal separation is investigated. In some regions
the crack edges come closer to each other, and form narrow bridges
(ligaments). An asymptotic form of the solution of the problem is
constructed under the assumption that the bridge either contracts to a
contour, or becomes an open arc. Special features of the stresses at
the tip of the bridge are studied for various forms of the tip.
Asymptotic formulas obtained are wused to produce variational
formulations of the problems, and the lack of unigueness of these
solutions is interpreted as the instability of the process of disruption
of narrow bridges. Examples are considered.
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